Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Nanoscale ; 15(17): 7854-7869, 2023 May 04.
Article in English | MEDLINE | ID: covidwho-2295702

ABSTRACT

Several vaccines against COVID-19 use a recombinant SARS-CoV-2 receptor-binding domain (RBD) as antigen, making the purification of this protein a key step in their production. In this work, citrate-coated magnetic iron oxide nanoparticles were evaluated as nano adsorbents in the first step (capture) of the purification of recombinant RBD. The nanoparticles were isolated through coprecipitation and subsequently coated with sodium citrate. The citrate-coated nanoparticles exhibited a diameter of 10 ± 2 nm, a hydrodynamic diameter of 160 ± 3 nm, and contained 1.9 wt% of citrate. The presence of citrate on the nanoparticles' surface was confirmed through FT-IR spectra and thermogravimetric analysis. The crystallite size (10.1 nm) and the lattice parameter (8.3646 Å) were determined by X-ray diffraction. In parallel, RBD-containing supernatant extracted from cell culture was exchanged through ultrafiltration and diafiltration into the adsorption buffer. The magnetic capture was then optimized using different concentrations of nanoparticles in the purified supernatant, and we found 40 mg mL-1 to be optimal. The ideal amount of nanoparticles was assessed by varying the RBD concentration in the supernatant (between 0.113 mg mL-1 and 0.98 mg mL-1), which resulted in good capture yields (between 83 ± 5% and 94 ± 4%). The improvement of RBD purity after desorption was demonstrated by SDS-PAGE and RP-HPLC. Furthermore, the magnetic capture was scaled up 100 times, and the desorption was subjected to chromatographic purifications. The obtained products recognized anti-RBD antibodies and bound the ACE2 receptor, proving their functionality after the developed procedure.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19 Vaccines , Citric Acid , Spectroscopy, Fourier Transform Infrared , Citrates
SELECTION OF CITATIONS
SEARCH DETAIL